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Abstract 

 
Study of Nuclear Reactions with 11C and 15O Radioactive Ion Beams 

By 
Dongwon Lee 

 
Doctor of Philosophy in Engineering – Nuclear Engineering 

University of California, Berkeley 
Professor Joseph Cerny, Co-chair 
Professor Jasmina Vujic, Co-chair 

 
Nuclear reaction study with radioactive ion beams is one of the most exciting 

research topics in modern nuclear physics. The development of radioactive ion beams has 
allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from 
the valley of nuclear stability, and to further our understanding of the evolution of the 
universe.  

The recently developed radioactive ion beam facility at the Lawrence Berkeley 
National Laboratory’s 88-inch cyclotron is denoted as BEARS and provides 11C, 14O and 
15O radioactive ion beams of high quality. These moderate to high intensity, proton-rich 
radioactive ion beams have been used to explore the properties of unstable nuclei such as 
12N and 15F.  

In this work, the proton capture reaction on 11C has been evaluated via the indirect 
d(11C,12N)n transfer reaction using the inverse kinematics method coupled with the 
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Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective 

12N→11C+p ANC is found to be ( ) 12
27.083.1

12
−±= fmC N

eff . With the high 11C beam 

intensity available, our experiment showed excellent agreement with theoretical 
predictions and previous experimental studies. This study also indirectly confirmed that 
the 11C(p,γ) reaction is a key step in producing CNO nuclei in supermassive low-
metallicity stars, bypassing the slow triple alpha process.  

The newly developed 15O radioactive ion beam at BEARS was used to study the 
poorly known level widths of 16F via the p(15O,15O)p reaction. Among the nuclei in the 
A=16, T=1 isobaric triad, many states in 16N and 16O have been well established, but less 
has been reported on 16F. Four states of 16F below 1 MeV have been identified 
experimentally: 0-, 1-, 2-, and 3- (Ex = 0.0, 0.19, 0.42, and 0.72 MeV, respectively). Our 
study utilized R-matrix analysis and found that the 0- state has a level width of 23.1 ± 2.2 
keV, and that the broader 1- state has a width of 91.1 ± 9.9 keV. The level width of the 2- 
state is found to be 3.3 ± 0.6 keV which is much narrower than the compiled value of 40 
± 30 keV, while a width of 14.1 ± 1.7 keV for the 3- state is in good agreement with the 
reported value (< 15 keV). These experimental level widths of all four levels are also in 
accordance with theoretical predictions using single particle shell model calculation. 
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CHAPTER  1 
Introduction 
 

1.1 The Landscape of Exotic Nuclei 
 

The origin of the universe has been one of the unexplained mysteries in modern 
science. Nuclei are made from cataclysmic events in the evolution of the universe. 
Although light nuclei were created within a few minutes after the Big Bang, heavier 
nuclei were produced, and are still being made, from nucleosynthesis in stars. In order to 
understand the fundamentals and origin of the physical world in which we live, it is 
necessary for us to understand the properties of nuclei. Our knowledge of nuclei has been 
founded mostly from intensive studies of stable nuclei on earth. However, almost every 
stellar process involves unstable nuclei. Therefore, a full understanding of unstable nuclei 
is indispensable for us to fully answer the origin of life forms, the materials surrounding 
us, and finally, the origin of the universe.  

Nuclei are composed of protons and neutrons, and come in a variety of combinations 
of protons and neutrons. Figure 1.1 (taken from Ref. [Ca97]) is known as the nuclear 
landscape, showing all the stable nuclei plus the known radioactive nuclei, as well as 
unknown territory, “Terra Incognita”. This figure shows approximately six thousand 
nuclei that are expected to exist by the strong force. The number of stable nuclei forming 
the valley of stability is less than 300. About 2200 of the known nuclei are radioactive 
while another 3500 nuclei are still unexplored. Hence, to fully understand nuclei, we need 
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to study those that reside very far from the stable isotopes toward the limits of nuclear 
stability. 

The proton drip line lies much closer to the valley of stability because of the existence 
of the repulsive Coulomb force between the protons in the nucleus and the core. In this 
region, proton radioactivity and the nuclear structure of proton-rich nuclei become of 
great interest. In contrast, the neutron drip line is considerably further from the valley of 
stability and harder to approach. In addition, the exploration of superheavy elements 
above the atomic number of 110 remains a major challenge to nuclear physics and 
nuclear chemistry.  

Nuclei play a critical role in astrophysical processes. Light nuclei such as carbon and 
oxygen are made from stellar evolution while elements heavier than iron are created in 
explosive stellar events. Unstable nuclei become very important links in a chain of 
nucleosynthesis, producing heavier elements by capturing protons or neutrons. The 
synthesis of nuclei in violent stellar events depends sensitively on the properties of 
unstable nuclei. Therefore, the experimental study of these astrophysical processes 
requires measurements of reactions involving short-lived radioactive species. Figure 1.2 
[Ca97] shows many interesting research topics in different regions of the nuclear 
landscape in terms of nuclear astrophysics.  

The advent of radioactive ion beams has opened a new era of nuclear physics, and 
many research opportunities are being investigated with these beams. Several examples 
of interesting research topics are shown in Table 1.1 [Ca97]. There is no doubt that 
radioactive ion beams have become indispensable tools for studies in modern nuclear 
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physics. The availability of radioactive beams allows us to explore the unknown territory 
of the nuclear landscape beyond the current limits, extending our horizons substantially.  

This thesis will utilize the Berkeley Experiments with Accelerated Radioactive 
Species (BEARS) facility at the 88-inch cyclotron at the Lawrence Berkeley National 
Laboratory (LBNL) to study the reaction properties of proton rich light nuclei using 
beams of 11C and 15O radioactive isotopes. It describes the efforts to examine two 
interesting nuclear reactions involving proton rich radioactive ion beams: the 
experimental studies of the 11C(p,γ) proton capture reaction strength via the alternate 
d(11C,12N)n transfer reaction, and the low lying level structure of 16F through 15O+p 
elastic resonance scattering in inverse kinematics.  
   
 

1.2 Thesis Organization 
 

Following this introduction, Chapter 2 presents a brief overview of radioactive ion 
beams, including the production methods in use. The importance of radioactive ion 
beams in modern nuclear physics and nuclear astrophysics will also be discussed. In 
addition, the BEARS radioactive ion beam facility at LBNL will be presented. Chapter 3 
is dedicated to the basic astrophysical processes from the viewpoint of nuclear reactions. 
This chapter mainly deals with stellar processes involving light nuclei. Hydrogen burning 
processes such as the pp-chain and the CNO cycle are introduced. Furthermore, the 
helium burning process is discussed briefly. Basic concepts of the astrophysical S-factor 
and stellar reaction rates are quantitatively explained. This chapter will provide a basic 
understanding of energy production in many stars, including our Sun. 
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Nuclear reaction research with unstable nuclei needs fundamental analysis tools to 
convert experimental data into meaningful results. Elastic resonance scattering is one of 
the most useful methods to explore the level structures of unknown or poorly known 
nuclei, especially when this technique is combined with thick target inverse kinematics. 
This technique with radioactive ion beams allowed us to reveal unknown spectroscopic 
information on several proton-rich nuclei, e.g., 12N via 11C+p [Pe06], and 15F via 14O+p 
reactions [Gu04, Gu05]. In order to compare experimental results with theoretical 
predictions, R-matrix theory (or resonance scattering theory) is necessary. The first part 
of Chapter 4 introduces this R-matrix theory quantitatively. 

Nuclear astrophysics is opening up as a more vigorous research field, and many 
important nuclear reactions involving unstable nuclei have yet to be studied. Difficulties 
inherent in these experiments include the fact that we are unable to reproduce stellar 
environments in the laboratory. For example, the cross section for the 11C(p,γ) capture 
reaction is very important, but it is so small that direct measurements are essentially 
impossible with currently available beam intensities. However, an indirect measurement 
with the d(11C,12N)n reaction allows us to deduce the reaction rate of 11C(p,γ) in stellar 
environments. This approach is known as the Asymptotic Normalization Coefficient 
(ANC) method, and has turned out to be a very useful and reliable tool for analyzing 
proton capture reactions. The theoretical background of the ANC method is also 
presented in Chapter 4. 

The BEARS facility at the 88-inch cyclotron provides high quality radioactive ion 
beams such as 11C (T1/2 = 20 min), 14O (T1/2 = 71 sec), and 15O (T1/2 = 122 sec). The 
availability of these nuclear beams allowed us to explore several proton rich nuclei of 
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interest. Although the 11C(p,γ) reaction is recognized as one of the key reactions in the 
evolution of supermassive stars, its reaction rate has been only estimated theoretically 
due to the lack of experimental information. Recently, a few studies have provided 
experimental reaction rates using a 11C beam and the ANC method. Our d(11C,12N)n 
experiment with BEARS successfully confirmed these new results, and the details are 
presented in Chapter 5.  

This thesis also exploits the newly developed 15O beam from BEARS to study the low 
lying structure of 16F. The level widths of the first four states in 16F (all proton unbound) 
have remained uncertain while those of its mirror nuclide 16N were well established. 
Elastic resonance scattering of 15O+p is reported for the first time, and is presented in 
Chapter 6 in detail. Finally, my conclusions and other research opportunities with 
BEARS radioactive ion beams will be discussed in Chapter 7. 
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Figure 1.1 The nuclear landscape showing the known nuclei and terra incognita. The 
black squares represent the stable nuclei. The adjacent region shows known short-lived 
unstable nuclei. Terra incognita comprises those nuclei which are still unexplored. 
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Figure 1.2 Astrophysics on the nuclear landscape. Many interesting astrophysical 
processes are shown in different regions of the nuclear landscape (these topics are 
explained in the Table 1.1) 

 
 



 

Table 1.1 Representative examples of research topics with radioactive ion beams [Ca97]. 

Physics topics Reactions and Techniques Beams Desired Intensities 
[particles/sec] 

Energy Range 
[MeV/nucleon] 

1. Rapid proton capture 
(rp processes) 

Transfer, elastic, inelastic, 
radiative capture, 

Coulomb dissociation 
14O, 15O, 

26Si, 34Ar, 56Ni 
108-1011 
105-1011 0.15-15 

2. Reactions with and studies of N=Z 
nuclei, symmetry studies 

Transfer, fusion, 
decay studies 

56Ni, 62Ga, 64Ge, 
68Ge, 67As, 72Kr 104-109 0.1-15 

3. Decay studies of 100Sn Decay 100Sn 1-10 low energy 

4. Proton drip line studies Decay, fusion, transfer 56Ni, 64,66Ge, 72Kr 106-109 5 
5. Slow neutron capture(s-process) Capture 134,135Cs, 155Eu 108-1011 0.1 
6. Symmetry studies with francium Decays, traps Fr 1011 low energy 
7. Heavy element studies Fusion, decay 

50-52Ca, 72Ni 
84Ge, 96Kr 

104-107 
106-108 5-8 

8. Fission limits Fusion-fission 
140-144Xe, 142-146Cs 

142I, 145-148Xe, 147-150Cs 
107-1011 
104-107 5 

9. Rapid neutron capture(r-process) Capture, decay, 
mass measurement 

130Cd, 132Sn, 142I 104-109 0.1-5 

10. Nuclei with large neutron excess Fusion, transfer, 
deep inelastic 

140-144Xe, 142-146Cs 
142I, 145-148Xe, 147-150Cs 

107-1011 
102-107 5-15 

11. Single-particle states / effective 
nucleon-nucleon interactions 

Direct reactions,  
nucleon transfer 

132Sn, 133Sb 108-109 5-15 

12. Shell structure, weakening of 
gaps, spin-orbit potential 

Mass measurement, 
Coulomb excitation, 

fusion, nucleon transfer, 
deep inelastic 

Kr, Sn, Xe 102-109 0.1-10 

13. Neutron-drip line studies, halo 
nuclei 

Mass measurement, nucleon 
transfer 

8He, 11Li, 
29Ne , 31Na, 76Cu 

106-108 
103-106 5-10 
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CHAPTER  2 
Radioactive Ion Beams 
 

2.1 Introduction 
 
The study of exotic nuclei is currently one of the most exciting research fields in 

modern nuclear physics because the structure and decay modes of many nuclei far from 
stability are still unknown. The nuclear properties of these radioactive species are of 
major interest to experimentalists at many research facilities over the world. We now 
know that the nuclear structures and properties of nuclei toward the proton or neutron 
drip lines can be quite unusual and so provide challenges to our traditional knowledge 
obtained from experiences with nuclei at or near stability. 

For proton-rich nuclei, the proton drip line is much closer to the valley of stability so 
that this drip line has been established for many elements up to and even somewhat 
beyond lead [Ro98]. Hence, short-lived, proton-rich radioactive beams will allow 
scientists to study nuclear levels and structures of proton-rich nuclei in the vicinity of the 
proton drip line as well as their astrophysical consequences.  

The development of radioactive ion beams using a variety of techniques has allowed 
many nuclear reactions of exotic nuclei to be studied for the first time. This strong 
interest in accelerated radioactive ion beams is reflected in the many worldwide facilities 
that are in operation, under construction or being proposed. The radioactive ion beam 
facilities worldwide are shown in Figure 2.1, taken from Ref. [Da05]. A brief review of 
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radioactive ion beam production methods and their characteristics are discussed, and the 
BEARS system at LBNL is introduced in this chapter. 
 

2.2 Production Methods of Radioactive Ion Beams  
 
Many radioactive ion beam facilities are based either on in-flight Projectile 

Fragmentation (PF) or on Isotope Separation On-Line (ISOL) methods. Projectile 
Fragmentation was pioneered in the beginning of the 1980’s. An energetic ion beam is 
fragmented, passing through a thin target, and a highly selected reaction product is 
transported to a secondary target. During transit, mass, charge and momentum selection 
are necessary. In the PF method, high-energy stable beams (from several tens to several 
hundreds of MeV per nucleon) are used. The reaction products are emitted in the forward 
direction with about the same velocity as the primary beam so that no post-acceleration is 
needed. This method is illustrated in Figure 2.2 (top) [Ca97]. 

In the ISOL method which mainly utilizes two accelerators [Ve96, Ca97], the 
radioactive nuclei are produced in a thick target by particles from a primary beam or 
driver accelerator. These are extracted from the target and transferred to an ion source. 
Ionized radioactive nuclides are then fed into a second accelerator to provide the 
radioactive beam. A wide range of primary beams including thermal neutrons, medium 
energy deuterons, high energy protons, and intermediate energy heavy ions are in use. 
This method is illustrated in Figure 2.2 (bottom) [Ca97].  

The ISOL technique allows the radioactive beams to be delivered with high quality 
and readily variable beam energy, which are suitable for nuclear structure and nuclear 
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astrophysics studies. However, a time delay and intensity loss resulting from the stopping  
and extraction from the target is a drawback of the ISOL method. The PF method delivers 
radioactive beams with a time delay typically only of microseconds. Both methods 
require effort to reduce contamination from other components in the beam delivered on 
the secondary target. It should also be noted that a hybrid arrangement capable of ion 
beam production by both methods has been proposed in the original Rare Isotope 
Accelerator (RIA) concept as shown in Figure 2.3 [Ri06]. 

 

2.3 BEARS Overview 
 

The BEARS system is a unique radioactive ion beam facility, which was developed 
based on the ISOL method at LBNL [Ce96, Ce99]. BEARS utilizes two existing 
accelerators to produce radioactive species and provide accelerated beams to the 
experimental areas at the 88-inch cyclotron. BEARS has provided proton-rich radioactive 
ion beams of 11C, 14O, and 15O. Production of the 11C/14O/15O beam begins at LBNL’s 
biomedical isotope facility (BIF), using a 40 µA, 10 MeV proton beam bombarding a 
high-pressure nitrogen gas target. Both 14O (T1/2 = 71 sec) and 11C (T1/2 = 20 min) are 
produced in the same nitrogen target, through the 14N(p,n) and 14N(p,α) reactions, 
respectively. For the case of 15O (T1/2 = 122 sec), a 15N gas target is used. Target system 
produces 11C as a form of carbon dioxide and releases it to go down the line. BIF is 
located about 350 m from the 88-Inch Cyclotron, and activity is rapidly transported as 
carbon dioxide, pushed by a flow of helium through an evacuated capillary tube that 
connects the two buildings. At the 88-Inch Cyclotron, the carbon dioxide is cryogenically 
separated from the bulk of the carrier helium, before being injected into the Advanced 
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Electron Cyclotron Resonance (AECR) ion source for subsequent ionization and 
acceleration [Jo00, Po00, Po03, Po05]. Figure 2.4 shows the transfer line, connecting BIF 
and the 88-inch Cyclotron. 

The BIF gas target system is filled with nitrogen target gas. The target is first partially 
loaded with 1% O2 plus 99% N2 to 4.4 atm, then topped off to 22 atm with pure nitrogen. 
The gas is then bombarded with 10 MeV protons for a fixed time. Then, the beam is shut 
off and the irradiated gas is unloaded into a holding tank, where the 11CO2 gas is held 
prior to transport. After unloading, the target is refilled and the cycle is repeated. In order 
to be transported and cryogenically separated by the rest of the BEARS system, the 11C 
activity must take the chemical form of CO2 [Po00]. 

For the case of 14O, additional conversion steps are necessary. A mixture of a few 
percent hydrogen is added to the nitrogen, which is then used to capture 14O in the form 
of water, H2

14O. However, water is not a good chemical form for use with BEARS, since 
it can stick in the long unheated transport line. To overcome this problem, an automated 
system was constructed to convert the water to carbon dioxide. First, the target is 
unloaded and the water is temporarily frozen in a small coil of stainless steel tubing, 
cooled to - 40 °C by a stream of cold dry air from a vortex tube. This allows the 
elimination of the other target gas components, producing a clean sample of H2

14O. The 
14O water is released through a momentary resistive heating of the steel trapping coil with 
a strong electric current. A flow of helium carries the activity through a small tube 
furnace containing carbon granules at high temperatures (1,000 ~ 1,100 °C). This 
converts the water vapor to carbon monoxide (H2

14O + carbon � C14O + H2). The carbon 
monoxide is then oxidized to carbon dioxide over a platinum catalyst at 180 °C. The 
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resulting [14O]CO2 is then in a chemical form used by the existing BEARS system. The 
complete trapping and conversion process takes about 10 seconds, and the conversion 
efficiency is better than 50% [Po03]. The overall process including transport to the 
AECR ion source takes about one 14O half-life. Production of 15O goes through the same 
processes as 14O, but the unloaded 15N target gas is recycled to be re-injected into the 
target chamber [Po06]. This conversion system for 14O is shown in Figure 2.5. 

The transport system carries the activity from the BIF facility to the 88-inch cyclotron. 
To transport the gas, pressurized helium gas drives the target gas down the evacuated 
transport capillary. Transport between the two buildings takes about 12 seconds. All the 
activity arrives at the 88-inch Cyclotron within a spike of about 2 seconds. The gas flow 
is then diverted through the cryogenic trap. The cryogenic trap, a stainless steel coil 
submerged in liquid nitrogen, captures the 11CO2 or [14,15O]CO2 and any remaining 
nitrogen gas is removed. The diagram of the BEARS transport system is shown in Figure 
2.6. 

Before being injected into the AECR-U ion source, the 11C/14O/15O activity must be 
released from the cryogenic trap by heating.  After most of the helium drive gas has been 
pumped away, warming of the trap is begun. When the temperature of the trap reaches 
120 K, the trap is connected to a reservoir, which is located as close to the ion source as 
possible. As the trap continues to warm, 11C/14O/15O activity, believed to still be in the 
form of CO2, is released from the trap and passes into the reservoir. The gas in the 
reservoir is bled into the ion source at a controlled flow rate because the controlled 
injection of activity is crucial to achieve stable operation of the AECR-U ion source. The 
11C/14O/15O is then ionized, extracted, and accelerated by the 88-inch cyclotron and 
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transported to an experimental area. In this thesis, the 11C beam was transported to Cave 
4A and the 15O beam was transported to Cave 0-2. 
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Figure 2.1 Radioactive ion beam facilities around the world. 
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Figure 2.2 Schematic diagrams of the two radioactive ion beam production methods in 
use. 
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Figure 2.3 Proposed hybrid method for the Rare Isotope Accelerator (RIA) in the US. 
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Figure 2.4 The transfer line between BIF (Bldg. 56) and the 88-inch Cyclotron (Bldg. 88). 
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Figure 2.5 The system for production of H2
14O and conversion to [14O]CO2. 
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Figure 2.6 The system for transporting activity between the two accelerator buildings. 
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CHAPTER  3 
Nuclear Reactions in Stars 

3.1 Introduction 
How were the elements from iron to uranium made? This is one of “The 11 Greatest 

Unanswered Questions of Physics,” which were reported by the National Academy of 
Science in 2002 [Tu03]. Many scientists have been trying to explain the evolution of stars 
and the universe. The standard model of hot Big Bang theory gives us some clues to the 
origin of the universe, and nuclear physics has played a very important role in 
understanding the creation of elements via stellar nucleosynthesis.  

Stars are the cooking pots of the universe, and nuclear reactions inside stars produce 
energy from synthesizing elements. In the 1920s, astrophysicists started to suspect that 
reactions among nuclear species were the source of the energy in stars [Ro88]. This 
suspicion led to considering an energy-producing mechanism that primarily involved 
hydrogen [At31]. Later, Bethe demonstrated in 1939 [Be39, see also Be38] that the 
energy source of the sun and similar stars is the fusion of hydrogen to helium. In 1957, 
Burbridge, Burbridge, Fowler and Hoyle published a famous paper, also known as B2FH 
[Bu57], in which they quantitatively explained many nuclear reaction sequences in stars.  

This chapter will describe nuclear reactions which produce energy in stars. The 
hydrogen and helium burning processes are qualitatively presented, and basic concepts in 
nuclear astrophysics are introduced. 
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3.2 Hydrogen Burning 
 
3.2.1 The p-p chain 
 

In general, stars begin life as a mixture of hydrogen and 24% (by weight) helium (The 
Sun’s composition is believed to be about 70% hydrogen and 28% helium by weight.). 
As this original gas cloud collapses, conversion of gravitational potential energy into 
kinetic energy increases the temperature of the cloud. As the temperature of star increases, 
protons are able to fuse with one another since their energy is now high enough to 
overcome the repulsive Coulomb barrier. The equilibrium between the outward pressure 
from the radiation released in fusion and the inward gravitational force allows stars to 
cease further collapse. Stars may last up to 1010 years in this phase [Kr88].  

The p-p reaction (the proton-proton reaction) is the primary fusion reaction in the 
chain that changes four hydrogen nuclei into one helium nucleus (hydrogen burning). It is 
known that this reaction chain is the dominant process in the Sun (and similar size stars), 
generating 98.5% of the Sun’s energy release. The p-p chain starts with the fusion of two 
protons to form a deuteron via the weak interaction, emitting a neutrino and a positron. 
The deuteron immediately fuses with another proton to form 3He as follows. 

γ
ν

+→+

++→+ +

Hedp
edpp

3
.                                                 (3.1) 

After this, two reaction branches are possible: 

pHeHeHe 2433 +→+ ,                                                 (3.2) 

or 

γ+→+ BeHeHe 743 .                                                   (3.3) 
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The former is called the p-p I chain, and the latter is further split into two branches, 
which are the p-p II chain and the p-p III chain, respectively. 

HepLi
LieBe
BeHeHe

47

77

743

2→+

+→+

+→+
− ν

γ
,                                                 (3.4) 

and 

HeBe
eBeB
BpBe
BeHeHe

48

88

87

743

2→

++→

+→+

+→+

+ ν
γ

γ

.                                                 (3.5) 

 
However, the net results of the balanced reaction chains are the same for all three 
branches as follows. 

γν 2224 4 +++→ +eHep .                                            (3.6) 

The dominance of a branch strongly depends on the stellar density and temperature. 
For example, it is known that the p-p I, p-p II and p-p III chains occur with frequencies of 
86%, 14% and 0.02%, respectively, in the Sun [Ro88]. Figure 3.1 shows a diagram of the 
p-p chain. 

 

3.2.2 The Hot p-p chain 
 

For stellar temperatures higher than 0.03 T9 (the Sun’s temperature is about 0.015 T9, 

where T9 = 109 K), the p-p chain is dominated by the p-p III chain (discussed in section 
3.2.1.) The 8B nuclei quickly decay to 8Be via β + decay (T1/2 = 0.77 sec.). For still higher 
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temperatures, it becomes quite probable for the 8B nuclei to capture another proton and 
form 9C. This is the starting point of the so called p-p IV chain. Its sequence is 
represented as follows. 

HeBepBeCpBpBe 489987 )()()(),(),( ανγγ + .                              (3.7) 

Another competing reaction is α -capture on 7Be, forming 11C. In this case also, the 
heaviest nuclide (11C) produced in this sequence decays and returns to helium. This 
sequence is known as the p-p V chain, and expressed as [Wi89], 

HeBpBeCBe 4811117 )(),()(),( αανγα + .                                    (3.8) 

The reaction sequences which include the p-p III, p-p IV, and p-p V chains are known 
as the Hot p-p chain, and are the dominant hydrogen burning processes especially in 
supermassive non-metalicity (no elements heavier than helium) stars with mass of 105 M� 
(M� = solar mass) or larger. In addition to these sequences, high stellar temperature (~ 0.1 
T9) allows competing reaction sequences to start such as  

CeNpCBe 1212117 )(),(),( νγγα + ,                                          (3.9) 

and, to a lesser extent 

CeNpCpBpBe 12121187 )(),(),(),( νγαγ + .                                 (3.10) 

These “break-out” reactions from the Hot p-p chain to A ≥ 12 regions were recognized as 

very important pathways to form 12C in the absence of CNO nuclei, and the key reaction 
is proton capture on 11C. 
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3.2.3 The CNO cycle 
 
The CNO cycle was proposed by Bethe in 1939 [Be39]. It is another way to convert 

four hydrogen nuclei into one helium nucleus, but the CNO isotopes just act as catalysts 
in the reaction chain. Its net result is the same as the p-p chain, but it is now known that 
the CNO cycle becomes the dominant hydrogen burning process in somewhat more 
massive stars than our Sun. Figure 3.2 and Eq. (3.11) show the reaction sequence of the 
CNO cycle. The stellar temperature is lower than 0.08 T9. 

HeCpN
eNO

OpN
NpC

eCN
NpC

41215

1515

1514

1413

1313

1312

       

      

+→+

++→

+→+

+→+

++→

+→+

+

+

ν
γ
γ

ν
γ

.                                             (3.11) 

This sequence is limited by the β + decay of 13N (T1/2 = 10 min.) and 15O (T1/2 = 122 sec.). 

If the stellar temperature approaches 0.08-0.1 T9, this cycle is limited by 14O (T1/2 = 71 
sec.) and 15O (T1/2 = 122 sec.), leading to the Hot-CNO cycle. 

HeCpN
eNO

OpN
eNO

OpN
NpC

41215

1515

1514

1414

1413

1312

       

       

+→+

++→

+→+

++→

+→+

+→+

+

+

ν
γ

ν
γ
γ

.                                                (3.12) 
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3.3 Helium Burning 
 
Stars spend most of their lifetime burning hydrogen as source of energy, but as the 

hydrogen becomes depleted by the p-p chain and the CNO cycle, as described above,  
helium accumulates in the center of the stars. When the hydrogen burning state is 
completed, inward gravitational collapse starts in the core of the stars and the stellar 
temperature increases until the helium burning process is ignited (about 0.1-0.2 T9). 
Hence, helium burning is mostly observed in old stars such as red giants. 

The first step in the helium burning process is to fuse two helium nuclei into a 8Be, 
but 8Be is unstable and decays back to two helium nuclei with a time of the order of 10-16 
seconds.  

BeHeHe 844 ↔+ .                                                       (3.13) 
However, 8Be may capture another helium before its decay.   

CHeBe 1248 →+ .                                                        (3.14) 
This is called the triple-alpha (3α )  process, leading to the formation of 12C. Heavier 
nuclei such as 16O, or even 20Ne, can be formed as by-products of additional helium 
capture by 12C or 16O, but these reactions are less likely since the Coulomb barrier 
increases with increasing nuclear charge. 
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3.4 The Astrophysical S-factor 
 
The nuclear reaction cross section, σ , for the above very low energy nuclear 

reactions can be simply represented as a function that depends upon a geometrical factor, 
the properties of the nuclei involved in the reactions, and the Coulomb barrier 
penetrability. This has a basic form of 

)2exp(1)( 222 πηπσ −××∝××= nuclei
E

EPnuclei
l

D ,               (3.15) 

where Ep µ2
hh

D == , and 
h

2
21

2
eZZ

E
µη = .  

The geometrical factor is represented in terms of the reduced deBroglie wavelength, 

D ; and the penetrability for a given l value, 
l
P , can be quantitatively evaluated using the 

Sommerfeld parameter, η . For example, the cross section for the direct capture reaction 

γ+→+ BxA  can be written as 

)()( 22 EPxAHBE
l

D += γπσ .                                          (3.16) 

The matrix element contains the nuclear properties of the capture reaction. Therefore, an 
astrophysical S-factor, )(ES , is introduced in order to describe the physics of the nuclear 

interaction in the reaction cross section as follows. 

 )2exp()(1)( πησ −= ES
E

E .                                             (3.17) 

The penetrability strongly depends on the energy, and may decrease the cross section by 
orders of magnitude as the energy decreases. To obtain a quantity less dependent on the 
energy, the astrophysical S-factor is expressed in terms of the cross section by 
rearranging Eq. (3.17), obtaining 
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)2exp()()( πησ EEES = .                                            (3.18) 

Consequently, )(ES  is less dependent on the energy than the cross section alone, so that 

it can be easily graphed, fitted and extrapolated over the relevant energy range.  
 

3.5 The Stellar Reaction Rate 
 
The astrophysical reaction rate )(TR of BbaA ),(  at a temperature T can be written as 

σν
δ Aa

aANNTR
+

= 1)( ,                                                     (3.19) 

where iN  is the number density of the particle i, ν  is the relative velocity, and σ  is the 

reaction cross section. The Aaδ  term arises for the special case of two identical species in 

the entrance channel. The quantity σν  is critical in calculating the stellar reaction rate, 

and is defined as 

∫= dv)()( νφνσσν ,                                                   (3.20) 

where )(νφ is the velocity distribution of the reacting particles. The reacting particles in a 

stellar environment are in thermal equilibrium at temperature T , and are described by a 
Maxwell-Boltzmann velocity distribution as follows. 





−



=

TkTk BB 2exp24)(
2

2
2/3 µννπ

µπνφ ,                                      (3.21) 

where µ  is the reduced mass of the reacting particles and Bk  is the Boltzmann constant. 

By using 2

2
1 µν=E , σν  is given by [Ro88] 



 29 

( )

( ) ∫

∫
∞

∞
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 −−


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



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
=

0
2/3

2/1
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2/3

2/1

2exp)(18

exp)(18

dE
Tk
EES

Tk

dE
Tk
EEE

Tk

BB

BB

πη
πµ

σ
πµ

σν

.                           (3.22) 

The integrand is a product of the cross section and the Maxwell-Boltzmann 
distribution. Since the cross section increases exponentially with energy while the 
Maxwell-Boltzmann distribution decreases exponentially with energy, this results in a 

function with peak at an energy of oE , and width of oE∆ . This quantity oE  is the 

effective energy for the nuclear reaction at a given temperature, and is known as the 
Gamow peak. 

For a non-resonance reaction or a resonance reaction involving a broad state, the 
stellar reaction rate is calculated numerically after inserting a cross section into Eq. (3.22). 
However, for a resonance reaction involving a narrow state, the Maxwell-Boltzmann 
distribution and the resonance width are assumed to be constant over the resonance 
region. The Breit-Wigner formula [Br36] for a narrow resonance state is then used for the 
cross section, and its integration yields the following relatively simple result. 

( ) 



−


=

Tk
E

kT B

R
R exp2 2

2/3

ωγ
µ
πσν h ,                                 (3.23) 

where ( )Rωγ  is the resonance strength. It is composed of the spins and the resonance 

widths of the reacting particles and the compound nucleus for the reaction BbaA ),( , and 

is given by 

( ) ( )( ) R

ba

aA
R jj

J
Γ
ΓΓωγ

1212
12

++

+
= .                                       (3.24) 
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The total reaction rate is given by a sum of all contributions from non-resonance (NR) 
reactions, and resonance (R) reactions. In addition, interference terms between resonance 
reactions (mostly from broad resonant states) and non-resonance reactions are also 
considered if the same angular momentum is involved in both reactions. As a result, the 
total reaction rate is expressed as [Ro88] 

ceInterferenRNRtot σνσνσνσν ++= ∑∑ .                         (3.25) 

In order to explain the evolution of stars, accurate calculations of stellar reaction rates 
are necessary, and the astrophysical S-factor or the nuclear reaction cross section is the 
key factor as shown above. Many experimental studies involving very important nuclear 
reactions in the stellar evolution have provided the astrophysical S-factors and the stellar 

reaction rates as research outcomes (for example, BpBe 87 ),( γ  [Xu94, Li96], 

OpN 1514 ),( γ [Be02], and NpC 1211 ),( γ  [Le95, Li03, Ta03]). The astrophysical S-factor 

and the stellar reaction rate of the 11C(p,γ ) reaction based on our experiment at the 

BEARS facility are presented in Chapter 5 (see Figure 5.6 and Figure 5.7). 
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Figure 3.1 Diagram of the p-p chain reaction 
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Figure 3.2 Diagram of the CNO cycle. 
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CHAPTER  4 
Nuclear Reaction Theory 

4.1  R-matrix Theory 

4.1.1  Introduction 

Lane and Thomas [La58] developed the modern theory of compound nucleus 
resonance reactions as an outgrowth of earlier work [Be36, Br36, Ka38, Wi47]. This 
approach has been called R-matrix theory [Wi47]. As presented by Land and Thomas, the 
nuclear reaction configuration space is divided into “internal” and “external” regions. The 
“internal” region corresponds to the compound nucleus per se, which includes the basic 
nuclear physics such as level energies, spins/parities, and level widths. The “external” 
region represents “channels” to or from the compound nucleus, which is related to 
penetration factors, Coulomb wave functions and so on. These two regions are matched 
at the surface of the nucleus using the boundary conditions. 
 

4.1.2  External Region 

The general solution for the interacting particles in the external region satisfies the 
following radial Schrödinger wave equation, including the Coulomb and centrifugal 
potentials. 

0)1(2
2

2
2

2

=


 +−−+
l

l
ll u
rr

kk
rd

du η ,                                            (4.1) 
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where 
h

mEk 2
= , and 

v
eZZ

h

2
21=η . When kr=ρ  is substituted in Eq. (4.1), the 

solutions are the known regular and irregular Coulomb functions ),( ρη
l

F  and ),( ρη
l

G . 

Their asymptotic behavior at large r is: 

])2/1()2ln(cos[~
])2/1()2ln(sin[~
ll

ll

lkrkrG
lkrkrF

σπη
σπη
+−−

+−− ,                                     (4.2) 

where 


 +=++= −

η
ησ lill

1tan]1arg[ 1 . 

In general, incoming (
l
I ) and outgoing (

l
O ) wavefunctions in the external region can 

be expressed in terms of Coulomb functions based on their asymptotic behavior at large 
r : 

)exp()(
)exp()(
llll

llll

ω

ω

iiFGO
iiFGI
−+=

−= ,                                               (4.3) 

with ∑
=




= l

l

1
arctan

n n

ηω , 0>l . 

Finally, a general solution 
l

Ψ  may always be expressed as a linear combination of 

incoming and outgoing wavefunctions, and given by 

llll
OUI −=Ψ ,                                                       (4.4) 

where 
l
U  is called the collision function (or collision matrix in a general multi-channel 

case) and is discussed in section 4.1.4. The boundary condition (logarithmic derivative) at 
the radius a  is then given by 

kalll

lll

ka OUI
OUI

==
−
−=




ρρ

ρρ
ρΨ
ρΨρ ''

)(
)(' .                                       (4.5) 
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4.1.3  Internal Region 

4.1.3.1  Elastic Scattering of Spinless Particles 

As an initial approach to the R-matrix framework, a simple case can be utilized as an 
example before discussing general R-matrix theory. General R-matrix theory accounts for 
all possible reactions, and includes reacting particles whose spins are non-zero. Therefore, 
elastic scattering (single channel) between spinless particles by general central potentials 
is the easiest case, but includes all the underlying principles.   

The radial parts )(1 rur − of two internal wave functions with a central potential V (r) 

at the two energies E1 and E2 will satisfy the Schrödinger equation as follows: 

( )

( ) 0)(2

0)(2

2222
2

2

1122
1

2

=−+





=−+





urVEM
dr
ud

urVEM
dr
ud

h

h ,                                               (4.6) 

where M is the reduced mass. If the first of these is multiplied by 2u  and the second by 

1u , and the difference is then integrated from 0 to the channel radius a : 

∫∫ =−+



 − aa

druuEEMdr
dr
udu

dr
udu

0 212120 2
2

2

12
1

2

2 0)(2
h

.                           (4.7) 

Partial integration of the first integral results in 

∫ =−+


 −
=

a

ar

druuEEM
dr
duu

dr
duu

0 21212
2

1
1

2 0)(2
h

.                            (4.8) 

If λu  and 'λu  are two different eigenfunctions, which correspond to two different 

eigenvalues λE  and 'λE , respectively,  λu  and 'λu  are orthonormal in the internal region: 

∫ =
a

druu
0 '' λλλλ δ                                                        (4.9) 
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Their boundary condition is set to be 

)()( aBu
dr

rdua
ar

λ
λ =




=

,                                                  (4.10) 

where B is a real number. 

The solution of the Schrödinger equation at any given energy E, )(ruE , can be 

expressed using a complete set of eigenfunctions in the internal region, and represented 
by 

)()( ruAruE ∑=
λ

λλ ,   ar ≤≤0                                           (4.11) 

where ∫=
a

EdruuA
0 λλ . 

By applying Eq. (4.8) to λu  and Eu ,  
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using the boundary condition Eq. (4.10). 
Inserting Eq. (4.13) into (4.11) results in 

ar
E

E
E Bu

dr
duaarGru

=




 −= ),()( ,                                     (4.14) 
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where ∑ −=
λ λ

λλ

)(
)()(

2),(
2

EE
auru

Ma
arG h  is the Green’s function which relates the value of 

the wave function in the internal region to its derivative on the surface. Finally, the R-
function is defined as 

∑
−

=≡
λ λ

λγ
)(),(

2

EE
aaGR ,                                           (4.15) 

where )(2
2/12

au
Ma λλγ 



= h  is the reduced width amplitude. 

 

4.1.3.2  General Case of Elastic Scattering 

The case of elastic scattering of spinless particles can be easily generalized to take 
account of the spins and reaction channels. As stated in Eq. (4.6) in the previous section, 
the wave equation for a system at two energies is expressed by 

222

111

ΨΨ
ΨΨ

EH
EH

=
= ,                                                     (4.16) 

where H is the Hamiltonian operator. The first of these is multiplied by *
2Ψ  and the 

complex-conjugate of the second by 1Ψ . The difference between the resulting equations 

is integrated over the internal region τ :  

∫∫ −=−
ττ

τΨΨΨΨτΨΨ dHHdEE ])[()( 1
*
21

*
21

*
212 ,                         (4.17) 

and Eq. (4.17) is then represented in terms of a surface integral at the channel surface S : 
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where ∫
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Ψϕh  ( cV  and cD  are 

found to be real). The last equality follows by substitution of the surface representations 

for Ψ and Ψ∇  in terms of the assumed complete set of surface functions cϕ : 
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In this case, the general boundary condition is given by 

c

c

c B
V
D

=

λ

λ                                                            (4.20) 

By applying these fundamental equations to any two proper solutions λX , and 'λX  

belonging to energy values λE , and 'λE , a wave function Ψ  can be expressed as a 

complete set as in Eq. (4.11). That is, 

∑=
λ

λλΨ XA ,                                                     (4.21) 

where ∫= τ λλ τΨdXA * , and '
*
' λλτ λλ δτ =∫ dXX  again. 

This coefficient λA  is determined by applying Eq. (4.18) to the solution Ψ of energy E  

and the solution λX  of energy λE  as is shown in Eq. (4.12) and Eq. (4.13).  

∑∫ ∑∫ −=−=−
c

cccc DVDVdXAXEEdXEE )()()( ****
λλτ λ

λλλλτ λλ ττΨ .        (4.22) 

Then, we find the coefficient λA  as follows. 
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c

c

c

c B
V
D

V
D

==

λ

λ

λ

λ
*

*

 and ∫



=== dSX

aM
VV c

cc

ccc λλλλ ϕγ *
2/12

*

2
h . 

Therefore, Eq. (4.22) is expressed by 
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By operating on Eq. (4.24) with ∫S c dS*
'ϕ ,  
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where ∫
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Finally, the R-function for the general case with reaction channel spins c and c’ is then 
defined by  

∑
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This generalized R-function reproduces Eq. (4.15) when c’ is equal to c (elastic scattering 
of spinless particles). 
 
 
 
4.1.4  The Collision Matrix 

At the matching radius of the internal and external regions, the logarithmic derivative 
of the internal wavefunction is obtained by Eq. (4.14):  
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and therefore, 
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This must be matched to that of the external wavefunction using Eq. (4.5), and these two 
equations are replaced by 
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where kr=ρ . 

As a result, a collision function lU  can be expressed in terms of the R-function: 
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where B
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For the general case with an incoming channel c and an outgoing channel c’, the 
complete collision matrix is expressed as follows [Vo62] 
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where ccc φωΩ −≡  is the scattering phase shift with 



=

c

c
c G

F
arctanφ  and 
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1
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n

c n
ηω , 0>l . In Eq. (4.29), all the expressions are diagonal matrices except 

for the R-matrix, and 1 is the diagonal unit matrix. 22
cc

c
c GF
P

+
≡

ρ  is the (Coulomb) 

penetration factor, ''
cccc

c
c GGFF

PS +≡  is the shift function and cL  is now defined as 

cccc iPBSL +−≡ . 

 

4.1.5  Differential Cross Section of the Nuclear Reaction 

The general differential cross section of a nuclear reaction can be given by 

ITRTCT
ksd

d ss ++×
+

= 2
'

''

)12( αα

αα π
Ω
σ ,                                    (4.30) 

for a wavenumber αk , and an incoming (outgoing) particle channel α )( 'α  with channel 

spin s )'(s  [La58]. 

CT is a Coulomb term, and obtained by 

''
2

'' )()12( ssCsCT αααα δθ+=  ,                                        (4.31) 
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where 'αθ  is the center-of-mass angle of the outgoing channel. The Coulomb factor 

)( '' αα θC is expressed by 
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where 
v
eZZ

h

2
21

=αη . 

Eq. (4.32) becomes exactly the same as the Rutherford scattering cross section if the  
resonance term RT and the interference term IT are ignored. 
The resonant term RT is given by 
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L

LL PssBRT ))(cos()'',(1
'αθαα

π
,                                    (4.33) 

with the Legendre polynomials ))(cos( 'αθLP  and the resonance coefficient )'',( ssBL αα  

which is 
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The transition matrix element J
lsaslT ''',α
is related to the collision matrix element as follows. 
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The angular distribution coefficient ),( 2211 sLJlJlZ  is expressed by 
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with the 3j symbols ( ) and the 6j symbols { }. 
The interference term IT is given by [Ru05] 
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Eq. (4.30) is then summed over the 's  and averaged with respect to the s  to obtain the 
differential cross section for the nuclear reaction 'αα →  [Bl52], leading to 
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where 1I  and 2I  are the spins of the particles in the reaction channel α . 

The theoretical differential cross sections from Eq. (4.38) are then compared to 
experimental data. For examples, data from a few elastic resonance scattering 
experiments [Te03, Gu05], are shown in Figure 4.1 to Figure 4.3 along with the 
theoretical R-matrix cross sections. 
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Figure 4.1 11C+p�12N elastic resonance scattering. The black squares with error bars are 

experimental data from Ref. [Te03] for −

= 2/3πJ  11C plus +
= 2/1πJ  proton elastic 

scattering. The solid line is obtained from our R-matrix calculation. Good agreement is 
clearly shown for four states in 12N up to 2.8 MeV (see reference for more details). 
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Figure 4.2 12C+p elastic resonance scattering. The black circles show our experimental 
data in arbitrary units. The solid line is from the R-matrix analysis. Note that an 
interference between the Coulomb and the resonance scattering is clearly observed 
around 0.4 MeV and 1.5 MeV. 

 
 
 



 46 

 
 
 

 

Figure 4.3 14O+p�15F elastic resonance scattering. The black squares represent 
experimental data. The broad peak around 1.23 MeV is a 1/2+ state, and the large peak 
around 2.8 MeV is a 5/2+ state in 15F (see text). The solid line is from the R-matrix 
analysis. 
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4.2 Asymptotic Normalization Coefficient Method 

4.2.1  Introduction 

Peripheral nucleon transfer reactions have been used for more than a decade to extract 
spectroscopic information. Most transfer reactions have been analyzed within the 
framework of the Distorted-wave Born Approximation (DWBA), and experimental 
spectroscopic factors were compared with theoretical predictions in order to establish the 

spins and parities of nuclear states. The DWBA analysis gives the πJ  values very well 
for states with a major (single particle) configuration, but does not give the true 
spectroscopic factor nearly as well. It has also been known that these extracted 
spectroscopic factors were strongly dependent on the optical model potential parameters 
used in the DWBA analysis, such as the Woods-Saxon potential parameters. In addition, 
the spectroscopic factor is strongly dependent on the behavior of the overlap function of 
the bound state wavefunctions within the nucleus. Hence, it is difficult to get an accurate 
spectroscopic factor with a DWBA analysis because a peripheral transfer reaction 
predominantly occurs at the surface of a nucleus. The Asymptotic Normalization 
Coefficient (ANC) is another important nuclear property that  can be obtained from a 
peripheral transfer reaction, and it is independent of the potential model unlike the 
spectroscopic factor.  

ANC’s have been studied in few-nucleon systems such as the deuteron, triton, 3He 
and so on, but, recently, the ANC method coupled with transfer reactions became a very 
useful tool to study direct radiative capture cross sections. The astrophysical radiative 
capture reaction is strongly dependent on the behavior of the tail of the nuclear overlap 
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function, which is given by the ANC. As a result, radiative capture cross sections can be 
determined by measuring the ANC. In addition, the ANC can be obtained from transfer 
reactions whose cross sections are orders of magnitude larger than direct radiative capture 
reactions. 
 

4.2.2 Theoretical Approach 

The theoretical scheme for using peripheral transfer reactions to extract ANCs  can be 
represented within the framework of a DWBA analysis. For the transfer reaction 

BYAX +→+ , where aYX += , aAB += , where a is the transferred particle, the 
DWBA amplitude is given by [Mu97] 

∑ +−
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X
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B
Aafi IVIEM )()()cos,( χ∆χθ .                                 (4.39) 

iE is the relative kinetic energy of particles X and A , θ  is the scattering angle in the 

center of mass, )(+
iχ  and )(−

fχ  are the distorted waves in the initial and final channels, 

and V∆  is the transition operator. 
Following the presentation in Ref. [Mu97], the overlap function I  of the bound state 

wave functions of particle α  ( γβα += ), is represented as follows. 
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where ϕ  is the bound state wave function; ζ  is a set of internal coordinates including 

spin-isospin variables; and J  and M  are the spin and spin projection. Also r/rr =
) , 

βγr is the relative coordinate of the center of mass of nuclei β  and γ , αj  and 
αjm  are 
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the total angular momentum of particle γ  and its projection in the nucleus α . αl  and 
αlm  

are the orbital angular momentum of the relative motion of particles β  and γ  and its 

projection in the nucleus α . 332211 mjmjmj  is a Clebsch-Gordan coefficient, 

)( βγαα
r
)

lmlY  is a spherical harmonic, and )( βγ
α
βγ αα

rI jl  is the radial overlap function.  

The radial overlap wave function is usually approximated by the spectroscopic factor 
and a bound state wave function of the relative motion of β  and γ  as 
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The ANC method is model independent approach, and the radial overlap function 
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rI jl is given in terms of the asymptotic normalization coefficient α
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where NR  is the nuclear interaction radius between β  and γ , )2(2/1, βγβη κ
αα

rW l +− is the 

Whittaker function describing the asymptotic behavior of the bound state wave function 

of two charged particles, βγβγβγ εµκ 2=  is the wave number of the bound state 

)(βγα = , βλµ  is the reduced mass of particles β  and γ , and βγβγγββγ κµη /ZZ=  is the 

Coulomb parameter of the bound state )(βγα = . The ANC α
βγ αα jlC  is also related to the 

nuclear vertex constant (VNC) α
βγ αα jlG  by 
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The bound state wave function is also approximated by a Whittaker function as 
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where 
ααβγ jlb  is the single-particle ANC. Figure 4.4 shows the bound state wave function 

approximated by the Whittaker function and the single-particle ANC. Therefore, the 
relationship between the ANC and the spectroscopic factor is given by 

αααααα βγβγ
α
βγ jljljl bSC 2/1)(= .                                             (4.45) 

In the conventional DWBA analysis, the cross section is expressed as 
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The DWBA cross section strongly depends on the bound state potential chosen in the 
analysis and on the behavior of single-particle ANC. Eq. (4.46) is then parameterized in 
terms of the ANC, and is represented as follows. 
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where aYX += , aAB +=  and a  is the transferred particle. 

Since Eq. (4.44) implies 22
XXBB jYaljAal

DWBA
bb

d
d ∝




Ω
σ  for peripheral reactions [Mu01], the 

dependence of the DWBA cross-section on the single-particle ANC is canceled out in Eq. 
(4.47). The single-particle ANC can be numerically calculated from the bound state wave 
function and the Whittaker function. As a result, the ANC’s are the only fitting 
parameters when the experimental and the DWBA cross sections are obtained. 

The ANC from a proton transfer reaction can be used to calculate its direct proton 
capture rates at astrophysical energies, which is very important in the hydrogen burning 
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process. The proton capture reaction cross section for the reaction γ+→+ BpA  is given  

by [Ga02] 
2)( )()(ˆ)( rrr +

= i
B
Ap

DC OI ψλσ ,                                          (4.48) 

where λ  contains kinematic factors, B
ApI  is the overlap function for pAB += , Ô  is the 

electromagnetic transition operator, and )(+
iψ  is the scattering wave in the incident 

channel. Assuming only one Bl  for simplicity, the total direct capture (DC) reaction cross 

section is given by [Mu97, Mu02] 
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Consequently, this relationship allows us to calculate the direct proton capture 
reaction rates by using the ANC’s. This ANC approach has an advantage over the direct 
measurement. Proton capture reactions have very low cross sections that have been very 
difficult to measure, and have large uncertainties. However, the ANC’s are readily 
obtained from proton transfer reactions whose cross sections are orders of magnitude 
higher than direct capture. 
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Figure 4.4  The single-particle radial wave function (dotted line) of 12N (11C core + single 
proton), and the Whittaker function (solid line). The asymptotic behavior of the wave 
function at large distance is described by the Whittaker function, and the single particle 
ANC.  
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CHAPTER  5 
Study of the 11C(p,γ) reaction via the 
indirect d(11C,12N)n transfer reaction 
 
5.1 Introduction 

The 11C(p,γ)12N reaction is believed to be an important branch point in supermassive 

low-metallicity stars because it can produce CNO seed nuclei before the traditional triple-

alpha (3α) process turns on. When a star consumes all its pp-chain fuel, and gravitational 

contraction becomes more dominant than outward thermal expansion, the 3α process 

turns on too late to prevent the star from collapsing to a black hole. Fuller et.al. [Fu86] 
showed that the existence of even a small amount of CNO seed nuclei prior to the helium 
burning stage could slow down the process of collapse and change the destiny of the star. 
Wiescher et.al. [Wi89] suggested several reaction sequences (“the hot pp-chain”), which 

lead to the formation of 12C, instead of the traditional 3α process. These include the 

sequences 7Be(α,γ)11C(p,γ)12N(e+ν)12C and 8B(α,p)11C(p,γ)12N(e+ν)12C. Sequences which 

involve 11C production could be more efficient ways for 12C formation, bypassing the 

slow 3α reaction, so that the 11C(p,γ)12N reaction rate and its astrophysical S-factor 

become of interest.  
A GANIL experiment using Coulomb breakup of 12N has shown that direct capture of 

protons by 11C nuclei is the dominant mechanism and that proton capture through the first 
two resonance states in 12N becomes less important in the temperature region below 0.3T9 
[Le95]. The 11C(p,γ) radiative capture reaction scheme is shown in Figure 5.1. The 
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Asymptotic Normalization Coefficient (ANC) method [Mu01, Ga01] for determining the 
direct capture component has been employed using the 14N(11C,12N)13C reaction at Texas 
A&M [Ta03], and the d(11C,12N)n reaction at Beijing [Li03]. These two experiments 
agreed on two conclusions: 1) the astrophysical S-factor and reaction rate based on the 
extracted ANC values are much higher than were theoretically predicted, and 2) the direct 
proton capture of 11C leading to the 12N ground state is more important than resonance 
capture in the temperature region of interest (< 0.3T9). However, the extracted ANC 
values differ from one another by 50%, and the d(11C,12N)n experiment was limited by 

low statistics, so that its experimental ANC value, 12 91.086.2)( −±= fmCeff , has a large 

uncertainty [Li03]. 
 

5.2 Experiment: The d(11C,12N)n Reaction 
The BEARS facility at LBNL’s 88-inch cyclotron provides several proton-rich 

radioactive ion beams for studies of exotic nuclei and nuclear astrophysics [Gu05, Pe06]. 
Among its radioactive ion beams, 11C (T1/2 = 20 min.) and 14O (T1/2 = 71 sec.) have been 
used to investigate several nuclear reactions. 11C is produced via 14N(p,α) reactions by 
bombarding 40 µA of 10 MeV protons from LBNL’s Life Sciences Division’s medical 
cyclotron onto a nitrogen gas target, which are then transferred in the form of carbon 
dioxide (11CO2) 350 meters via a capillary line to the 88-inch cyclotron for injection into 
its Advanced Electron Cyclotron Resonance ion source [Po00, Po03, Gu05].  

A 300 MeV 22Ne8+ pilot beam was used to tune the cyclotron and beam line optics for 
Cave 0-2 prior to 11C4+ beam tuning, and then the beam optics was first set to focus a 
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11B4+ beam whose cyclotron frequency is very close to that of 11C4+ (the cyclotron 
frequency difference is only 1.4 kHz). Finally, a 11C4+ beam was accelerated and stripped 
to its 6+ charge state by using a stripper foil (204 µg/cm2 Al foil) in order to eliminate 11B 
contamination. The average beam intensity of the 150 MeV 11C beam on the target was 

about 6×105 ions/sec. The typical 11C beam energy spread at 0° without a target was 1.18 

MeV FWHM. 
Figure 5.2 (a) shows the experimental setup for the d(11C,12N)n reaction. The focused 

11C beam passes through a series of Ta collimators, and impinges on 2.22 mg/cm2 CD2 
target (deuterated polyethylene). Emitted 12N nuclei from the d(11C,12N)n reaction were 
measured in a detector telescope, located 65 cm away from the target. This detector 
telescope is composed of a rectangular 7-strip ∆E (60 µm) and E (1 mm) silicon detectors 
with a cooling system. A trapezoid shaped collimator in front of the detector telescope 
was necessary to define the angles of each detector strip as shown in Figure 5.2 (b). As a 
result, it was possible for us to measure the forward (0° < θc.m. < 90°) and backward (90° 
< θc.m. < 180°) 12N peaks at seven different laboratory angles. The laboratory angles of 
the 7 strips are 1.2, 2.0, 2.8, 3.7, 4.5, 5.3, and 6.2 degrees, from strip 1 to strip 7, 
respectively: These laboratory angles correspond to the c.m. angles of 10.9 (119.0), 18.9 
(134.1), 27.1 (143.5), 35.9 (151.4), 45.4 (158.5), 56.5 (165.1), and 71.5 (171.4) degrees 
for the forward (backward) peaks, respectively. An additional single Si detector (1 mm) 
was located at 0° to measure the 11C beam intensity. A typical two-dimensional ∆E-Etotal 
spectrum is shown in Figure 5.3 (a), and a 12Ng.s. forward peak is clearly observed above 
the scattered 11C. Figure 5.3 (b) shows the gated 12N spectrum.  
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In order to calibrate the whole detection system, the d(12C,13N)n experiment was 
performed with the same setup. The d(12C,13N)n angular distribution is shown in Figure 
5.4. This reaction also allowed us to compare our experimental results with the 
12C(d,n)13Ng.s. reaction at 25 MeV [Ka86]: a 25 MeV deuteron beam on a 12C target 
(Ec.m.= 21.41 MeV) in conventional kinematics is nearly equivalent to an 150 MeV 11C 
beam on a deuteron target (Ec.m.= 21.56 MeV). Our cross section turned out to be 
somewhat lower than that of the previous study, but the difference is less than 3% at the 

smallest c.m. angle ( o9.10=cmθ ). Three theoretical angular distributions are also shown 

in Figure 5.4, as discussed in section 5.3. Our experimental data are also in good 
agreement with the theoretical predictions within a 5 % difference at the smaller c.m. 
angles.  
 

5.3  Data Analysis and Results 
The angular distribution of the d(11C,12N)n reaction was obtained from the measured 

12N peaks and is shown in Figure 5.5. Although the experimental setup was designed to 
cover emitted 12N nuclei from 8° to 174° c.m., the data at angles beyond 72° c.m. had to 
be excluded because of their poor statistics. The experimental angular distribution was 
then compared with theoretical predictions. For the DWBA calculation, three sets of 
global optical model parameters for the d(11C,12N)n reaction were obtained from the 
literature [Wa69, Ha71, Da80] (since 11C optical model parameters were not available). 
These parameter sets for the d(11C,12N)n reaction are given in Table 5.1. (Parameter Set 
III differs from Set I only by its spin-orbit potentials.) The DWBA analysis with these 
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parameter sets was first compared with our d(12C,13N)n data (parameter sets adjusted to 
describe the d(12C,13N)n reaction). The calculated d(12C,12N)n angular distributions 
shown in Figure 5.4 are in good agreement with our experimental results, and the 
12C(d,n)13N study [Ka86]. The angular distributions that resulted from these parameter 
sets start to diverge as the c.m. angle increases, but the differences at smaller angles 
remained less than 3% (see Figure 5.4). For the optical model parameter sets, the 
adiabatic approximation method was also taken into account in order to include the 
break-up effect of the loosely bound deuteron [Ha71, Jo72, Ka86]. Then, these parameter 
sets were applied to the d(11C,12N)n reaction experimental data. An averaged DWBA 
cross section from these three sets is shown in Figure 5.5. The overall shape of the 
averaged angular distribution successfully describes the experimental result at these 
forward angles. 

We now wish to extract the ANC from the transfer reaction data, and the 12N→11C+p 
ANC was deduced from the following equation. 
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This equation is Eq. (4.47) derived above, now modified for the specific d(11C,12N)n 

reaction: in Eq. (5.1), ljC  and ljb  represent the asymptotic normalization coefficient and 

single particle ANC of the transferred proton with the orbital angular momentum l  and 

the total angular momentum j ,  respectively. The ANC’s of npd +→ , 2)( dC  is known 
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to be 0.76 1−fm  [Bl77], and the ratio of ( )22/3
12N
pC  to ( )22/1

12N
pC  is 0.17, which is obtained 

from the average value in a recent shell model calculation [Ti03a]. The DWBA cross 
sections are calculated by the zero-range DWUCK4 code with a reaction normalization 

coefficient of 342 1055.1 fmMeVDo ⋅×=  [Sa83, Ku93, Im01], and the average of the 

three DWBA cross sections is compared with the experimental result. Given all this 
available information, the DWBA cross section is then normalized to the experimental 

result, adjusting N
pC 12

2/1
 as a fitting parameter. The extracted ANC is found to be 

( ) 12
23.056.1

12

2/1

−±= fmC N
p , and the ratio of 2/1p  to 2/3p  leads to ( ) 12

05.026.0
12

2/3

−±= fmC N
p . 

Finally, the total effective 12N→11C+p ANC is obtained to be 

( ) ( ) ( ) 1222
27.083.1

12

2/3

12

2/1

12
−±=+= fmCCC N

p
N

p
N

eff . The uncertainty mainly comes from the 

systematic errors in the experimental (statistics) and the theoretical DWBA cross section 
(optical potential models).  

The extracted ANC is then used to calculate the astrophysical S-factor and stellar 
reaction rate of the 11C(p,γ ) reaction. The direct capture cross section to the 12N ground 

state is calculated by the RADCAP code [Be03], and the Breit-Wigner resonance formula 
is used for the population of the 2+ (Ex=0.960 MeV) and 2- (Ex=1.190 MeV) resonance 
states in 12N. For the 2+ state, only an upper limit of 20 keV has been established for the 

pΓ  [Aj90], but suggested values of 5.5 keV [Le95] and 2.6 meV [Wi89, Le95] have been 

used for pΓ  and γΓ  , respectively, in this thesis. A pΓ  of 118 keV [Aj90] and γΓ  of 

13.0 meV [Mi02] were adopted for the 2- state.  
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The calculated astrophysical S-factor is shown in Figure 5.6, including an 
interference term between the direct capture (DC) and the broad 2- resonance (R) state, 
which is expressed by  

[ ] [ ])(cos)()(2)()()( 2/1 EESESESESES RRDCRDC δ++= ,               (5.2)          

where )(2arctan)(
R

R
R EE
E

−
=

Γδ  is the resonance phase shift [Bu88]. The S-factor at 

zero energy is found to be keVb020.0097.0)0(  ±=S in this work. Given the direct and 

resonance capture cross sections, the 11C(p, γ ) reaction rate as a function of stellar 

temperature can also be calculated, and is shown in Figure 5.7. 
 

5.4  Discussion and Summary 
The extracted 12N→11C+p ANC of 127.083.1 −± fm in this work is less than 

the 177.043.2 −± fm  from the same transfer reaction study of Ref. [Li03] (but the 

measurements agree within error bars). However, our result is improved by its better 
statistics (due to our higher 11C beam intensity), and shows good agreement with the 

reported value of ( ) 12
25.073.1

12
−±= fmC N

eff  from the 14N(11C,12N)13C reaction [Ta03]. 

This shows that the ANC can be experimentally obtained with consistent nuclear 
properties regardless of the experimental reaction scheme. In addition, a study [Ti03b] 
has reported that the 12N ANC could be estimated based on known information for its 
mirror nucleus, 12B. They developed a relationship between the proton and neutron 
squared ANC’s in the two mirror nuclei, and then obtained a ratio of 1.37 between 12N 
and 12B from theoretical potential model calculations. The experimental 12B ANC is 
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( ) ( ) ( ) 12
2/3

2
2/1

2
exp 35.1

121212
−=+= fmCCC B

n
B

n
B  from a d(11B,12B)p reaction study [Li01]. This 

implies that the effective 12N ANC value is expected to be 184.1 −fm , which is in 

accordance with our experimental result. 
The astrophysical S-factor at zero energy, )0(S , from our calculation turned out to be 

about two times larger than that from the Coulomb breakup experiment [Le95], but 
agrees with those from ANC method studies. The direct capture reaction dominantly 
contributes to the total S-factor in the energy region of astrophysical interest. The 
interference term increased the S-factor slightly in the low energy region as shown in 
Figure 5.6.  

In the temperature region of 0.2 < T9 < 0.4, the reaction rate is dominated by the 
direct and the 2- resonance captures, while the contribution from the 2+ state is less 
important (see Figure 5.7). As a result, we can confirm 1) that the major contribution to 
the 11C(p,γ ) reaction rate comes from the direct capture reaction as was concluded in 

previous studies, and 2) that the 11C(p,γ ) reaction rate appears to be higher than the 

previous estimate [Ta03, Li03]. This result confirms that the 
3He(α,γ)7Be(α,γ)11C(p,γ )12N reaction sequence is also an important path in producing 

CNO nuclei in low-metalicity supermassive stars. 
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Figure 5.1 The 11C(p,γ) radiative capture reaction scheme. Resonant captures through the 
2+ and 2- states in 12N are also shown along with direct capture to the 12Ng.s.  Note that all 
excited states in 12N are proton unbound. 
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(a) 
 

 
 (b) 

Figure 5..2 (a) The d(11C,12N)n reaction experimental setup. (b) Front view of the 7-strip 
Si detector through a trapezoidal collimator 
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(a) 

 
 (b) 

Figure 5.3 (a) A two-dimensional particle identification spectrum from ∆E-Etotal 
coincidences at the second strip. The 12N gate is shown above the scattered 11C beam. 
Note that 12C also appears from the d(11C,12C)p reaction. (b) A one-dimensional spectrum 
inside the 12N gate. A 12Ng.s. forward peak is clearly observed along with background 
from the 12C(11C,12Ng.s.)11B reaction. 
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Figure 5.4 The d(12C,13N)n reaction angular distribution. Our experimental results are 
compared to those from a previous study of 12C(d,n)13N (see text). Error bars are shown 
(this work) or are within the open rectangles. Three different theoretical angular 
distributions (DWBA) are also shown. 
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Figure 5.5 The d(11C,12N)n reaction angular distribution. Black squares are our 
experimental results, and the solid line represents averaged DWBA cross sections based 
on three different optical model parameter sets (see text). 
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Figure 5.6 The calculated 11C(p,γ) astrophysical S-factor, based on the extracted ANC 
value. The dotted line represents the S-factor from direct capture. The dashed line is the 
contribution from the 2+ state, and the dash-dotted line from the 2- state in 12N. The solid 
line is the total S-factor, including the interference term between direct capture and the 2- 
state. 
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Figure 5.7 11C(p,γ ) stellar reaction rate. The dashed line shows the contribution of the 

narrow 2+ state, and the dash-dotted line is the combination of the direct capture and the 
broad 2- state. The solid line represents the total 11C(p, γ ) stellar reaction rate as a 

function of stellar temperature T9 (109 K). It clearly shows that the sum of the direct 
capture and the resonant capture through the 2- state dominates in the low temperature 
region (see text). 
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Table 5.1 Optical model parameters for the d(11C,12N)n reaction. (V and W are expressed 
in MeV, and r and a in fm.)*.  

 
 

Set Vr Wi WD Vso ro ao ri ai rso aso rc 

I : d a,b 114.2 0.0 13.68 3.0 1.14 0.61 1.14 0.54 1.14 0.61 1.14 

 n a 58.1 0.0 9.98 26.0 1.13 0.57 1.13 0.50 1.13 0.57 1.13 

II : d c 83.8 0.93 11.98 6.54 1.17 0.76 1.33 0.53 1.07 0.66 1.30 

 n a 58.1 0.0 9.98 11.0 1.13 0.57 1.13 0.50 1.13 0.57 1.13 

 III : d a,b 114.2 0.0 13.68 11.0 1.14 0.61 1.14 0.54 1.14 0.61 1.14 

 n a 58.1 0.0 9.98 11.0 1.13 0.57 1.13 0.50 1.13 0.57 1.13 

 
a. From Ref. [Wa69] and our d(12C,13N)n results. 
b. From Ref. [Ha71] 
c. From Ref. [Da80] 

                                                
* The potential )(rV in the DWUCK4 code is given by 
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1),,(  and )(rVC  is the Coulomb potential. 



 69 

CHAPTER  6 
 
Study of Low-lying Resonant States in 16F 
using an 15O Radioactive Ion Beam 
 
6.1  Introduction 

Among the nuclei in the A=16, T=1 isobaric triad, many states in 16N and 16O have 
been well established, but less has been reported on 16F. Four states of 16F below 1 MeV 
have been identified experimentally, and their energies are currently known to an 
accuracy of 4-6 keV (the next known state of 16F lies at 3.76 MeV) [Ti93]. Experimental 
studies with stable beams have also established spin-parity values for these low-lying 
states, but only upper limits or rough estimates of their level widths have been reported. 
The main difficulty in characterizing 16F has been that it can be broadly studied by 
relatively few reactions, primarily 14N(3He,n) [Za65, Bo73, Ot76], 16O(3He,t) [Pe65, 
Na77, St84, Fu02], 16O(p,n) [Mo71, Fa82, Or82, Oh87, Ma97], and 19F(3He, 6He) [Na77].  

All the states in 16F are unbound to 15O+p. The spins and parities of the low-lying 
states have been found to be 0-, 1-, 2-, and 3- in ascending order in energy, and are 
believed to have 15O core-single proton configurations, namely 1p1/2-1 2s1/2 for the 0-, 1-

states and 1p1/2-1 1d5/2 for the 2-, 3- states [Fa82, St84]. However, the variation in the 
1d5/2-2s1/2 energy level difference across the members of the A=16, T=1 isobaric triad 
[Fo95, Og99] made initial 16F spin assignments uncertain [Za65, Ot76] since 16N showed 
Jπ = 2-, 0-, 3-, 1- for the four levels in ascending energy order while Jπ = 0-, 2-, 1-, 3- arose 
in 16O, as is shown in Figure 6.1.  
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A recently developed 15O radioactive ion beam from the BEARS facility has been 
used to study the structure of 16F using 15O+p elastic resonance scattering and the Thick 
Target Inverse Kinematics (TTIK) method on a polyethylene target [Ar90, De92]. Of 
particular interest is establishing the level widths of the low-lying 16F states, which can be 
compared to theoretical calculation for this proton unbound nucleus. 
 

6.2  Experiment 
Production of 15O beams (T1/2= 122 sec) with BEARS is described in Chapter 2, and 

this particular experiment was performed in Cave 0-2 at the 88-inch cyclotron. To set up 
the beam optics for Cave 0-2 and eliminate the 15N component of the beam, a 160 MeV 
20Ne8+ beam was initially used as a pilot beam; then a weak 120 MeV 15N beam was 
tuned into the experimental area, since the 15N6+  accelerating frequency is very close to 
that of the 20Ne8+. Next, the 15N beam was fully stripped to its 7+ charge state by passing 
it through a thin aluminum stripper foil placed before an analysis magnet. The subsequent 
beam optics was then adjusted to focus the 15N7+ beam on the target. These adjustments 
were then changed to obtain 15O8+ from an accelerated and stripped 15O6+ beam. Finally, 
the cyclotron was carefully tuned to maximize a focused 120 MeV 15O8+ beam on the 
target position, eliminating 15N contamination as much as was possible. However, the 
cyclotron frequency difference between 15N6+ and 15O6+ is so small (1.2 kHz) that a 
residual amount of 15N contamination was still observed in the low energy region of the 
15O spectrum. The measured amount of 15N contamination of the 15O beam was less than 
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2 % throughout the experiment. The 15O beam profile measured at 0° in the laboratory 

using a single silicon detector (see below) is shown in Figure 6.2. 
Figure 6.3 shows the last stage of the experimental setup. At the beginning of the 

experiment, the 15O beam was counted at 0° with a single silicon detector (1,000 µm), 

and scattered 15O beam from a thin gold foil was measured simultaneously by a ∆E-E 

monitor telescope (25 µm and 300 µm, respectively) placed at 20° to the beam axis. The 

ratio between these two measurements allowed us to calculate that the average beam 

intensity of 15O impinging on the target was 4.5×104 pps. The beam energy spread was 

measured to be 1.66 MeV FWHM at 0° after going through the aluminum stripper foil 

and the gold scattering foil (see Figure 6.3). 

For the 15O+p experiment, the 120 MeV 15O beam† was slowed down by a 3.81 µm 

Ni degrader, and completely stopped in a thick 200 µm (18.4 mg/cm2) CH2 target. The 

thickness of Ni degrader was chosen to stop the 15O beam very close to the end of the 
target, minimizing the energy loss of emerging low energy protons within the CH2 target. 

The main particle telescope was composed of ∆E (30 µm), E1 (700 µm), and E2 (5,000 

µm) silicon detectors, located at 0° at a distance of 10.9 cm from the target. The first two 

detectors were thick enough to detect protons from the four low-lying resonance states in 
16F, and the third one permitted the detection of high energy protons of up to 7 MeV in 
the center-of-mass (c.m.). The total energy resolution was found to be 28 keV c.m. 
(FWHM) for the energy region below 3 MeV c.m., including contributions from 
electronic noise, detector/setup geometry [Mo66], and beam straggling [Ma00] in the 
CH2 target.  
                                                
†  This beam energy was chosen to permit maximum 15O production by extracting the 6+ charge state from 
the AECR ion source, which has the maximum yield. 
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Figure 6.4 shows a typical two-dimensional particle identification spectrum recorded 
during the experiment using the ∆E-E1 part of the detector telescope. The proton band is 
clearly shown in this figure along with a lot of β+ counts. A gate was drawn around this 
proton band, and the proton spectrum inside the gate was converted into a one-
dimensional excitation function. This excitation function consisted of the sum of the ∆E 
and E1 detectors up to 2.7 MeV c.m. (see Figure 6.4 caption) and at higher energies was 
the sum of the ∆E, E1 and E2 detectors (in triple coincidence). The energy calibration for 
the ∆E-E1 and the ∆E-E1-E2 detector system was established by using the p(15N,p) 
reaction [Ha57, Ba59, De62, Da84] before and after the main p(15O,p) measurement 
because the energy levels of the relevant excited states in 16O are well known. The 
measured laboratory energy of the protons at a given laboratory angle can then be 
converted to center-of-mass energy by using 

.,215

15

.. cos)(4
)(

labp
lab

p
mc E

OM
OMm

E
ϑ

+
= .                                           (6.1) 

Finally, proton counts were converted into cross-sections without any background 
subtraction, so that an arbitrary cross-section unit has been used for the excitation 

function. The experimental cross-section, 
Ω
σ

d
d , was calculated by using an energy-

dependent target thickness, x∆ , which is inversely proportional to the stopping power, 

dx
dE  [Zi03]: 
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where R  is the proton yield, ρ  is the target density [atoms/cm3], ∆Ω  is the detector 

solid angle, and I  is the time integrated 15O beam intensity [Ku01, Te03]. 
Figure 6.5 shows our measured p(15N,p) excitation function along with the results 

from the two previous 15N(p,p) studies [Ba59, Da84]. The uncertainty of our energy 
calibration was estimated to be about ± 15 keV in the center-of-mass frame. Figure 6.6 
then shows the p(15O,p) excitation function up to 6.5 MeV, measured at 180° c.m. using 
the data from the complete detector telescope (∆E, E1, E2) as described earlier. 
 

6.3  Data Analysis 
In this study, the level widths of the first four states in 16F were the main focus of the 

data analysis, so that only the low energy region below 3 MeV in the center-of-mass was 
selected for R-matrix analysis. As shown in Figure 6.7, the first four states in 16F are 
quite distinguishable, and the interference between potential and resonance scattering is 
clearly observed. In order to compare these experimental results with theory, a resonance 
scattering analysis code, which is based on Eq.(4.30) and Eq. (4.38) in Chapter 4 (also 
see Ref. [La58, Ru05] for more details), was written to calculate the theoretical excitation 
function. In order to perform the correct comparison with theory, background subtraction 
is necessary because protons from the reaction between the 15O beam and 12C in the CH2 
target may contribute to the measured proton spectrum. Due to the limited beam time, we 
did not measure the 12C(15O,p) spectrum. As a result, the earlier 12C(14O,p) reaction data 
using 120 MeV 14O were used to estimate this background contribution [Gu05]. This 
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background proton spectrum is also shown in Figure 6.7, and the background is small in 
the region of the four low-lying resonances.  

The πJ  values of these four states are 0-, 1-, 2-, and 3- (as discussed earlier). To make 
the analysis simple, the 0- and 1- states are assumed to be pure 1p1/2-1 2s1/2 configurations, 
and only s-wave contributions to these resonances are considered. For the 2- and 3- states, 
only d-wave contributions are considered with a 1p1/2-1 1d5/2 configuration. Theoretical 
shell model calculations predict that the amplitudes of these simple configurations are 
well over 0.97 in these states (see Table III in Ref. [Fa82] and Table 4 in Ref. [St84]). 
The partial width of each combination of channel spin, s , and orbital angular momentum, 

l , is represented as 
lsΓ , which is a key parameter in the data fitting.  

For the data fitting, the R-matrix calculation was convoluted with the experimental 
resolution function, and compared to the experimental cross section, after adding the 
background function discussed earlier whose shape was adopted from an earlier 
12C(14O,p) experiment. All the fitting parameters in both the R-matrix analysis ( RE  and 

lsΓ ) and the background function (a simple Gaussian function) were iterated using a 

minimization algorithm, MINUIT [Ja75], until the lowest chi-square per degree of 
freedom was obtained. This procedure was repeated, changing the initial values, 
upper/lower limits and step sizes of the fitting parameters, until the best χ2 value was 
obtained.  

A channel radius of 5 fm obtained by the conventional formula 

( )fmAAr 3
1

2
3

1
145.1 +=  was used in the all R-matrix calculations. Different values for 

the channel radius within a range from 4.5-5.5 fm were also tested, but no significant 
change in the results was observed. Finally, the level width and excitation energy of each 
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state were obtained from the average value of these fitting results; the average 2χ  value 

was 1.08 per degree of freedom, which varied from 0.84 to 1.27. 
 

6.4  Results and Discussion 
The experimental cross section and the R-matrix calculations are shown in Figure 6.7, 

where the adopted background function is also shown. The level widths and excitation 
energies of the four states in this study are summarized in Table I. Spin-parity 
assignments were not tested in this work because data were only taken at one angle, but a 

different order of πJ  values such as 0-, 2-, 1-, and 3- for the first four states in 16F was 

found to create an excitation function whose 2χ  value was unacceptable. The excitation 

energies of these four states were also fitting parameters, and the results are in very good 
agreement with the known values [Ti93]. However, no improvement in the values was 
possible since these values are already known quite accurately with uncertainties less 
than 10 keV.  

The level widths in Table I obtained from the 15O+p data show several different 
results when compared with the compiled values from the previous studies. The level 
widths of the 0-, and 1- states were reported to be 40 ± 20 keV and less than 40 keV, 
respectively, in Ref. [Ti93]. Our study finds that the 0- state has a level width of 23.1 ± 
2.2 keV, and that the broader 1- state has a width of 91.1 ± 9.9 keV (about twice the 
compiled value). However, the 14N(3He,n)16F data [Ot76] reported that the first two states 
are 1-, and 0- with level widths of 39 ± 20 keV, and 96 ± 20 keV, respectively (see Table 
I). Also note that the 16O(3He,tp) data [St84] reported similar results (to ours) of ~ 25 keV 
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and ~ 100 keV for the 0- and 1- state, respectively. The level width of the 2- state is found 
to be 3.3 ± 0.6 keV which is much narrower than the compiled value of 40 ± 30 keV, 
while 14.1 ± 1.7 keV for the 3- state is in good agreement with < 15 keV in Ref. [Ti93]. 
As reflected in the experimental results, the 0- and 1- states show relatively broad peaks 
as would be expected from s-wave scattering compared to the narrower 2- and 3- states 
from the d-wave scattering.  

In order to compare these experimental level widths to theoretical expectations, the 

single particle width of each state, spΓ , was obtained from a potential model calculation 

for two different diffusion parameters, a , as is shown in Table II (also see Table III). 
This single particle width calculation allows us to estimate the proton partial width of 

each state using the equation spp SC ΓΓ 2
=  if we know the single-particle spectroscopic 

factor, SC 2 . Experimental spectroscopic factors for 16N, which has the same core-single 
particle configuration as 16F, are available from a 15N(d,p)16N transfer reaction study 
[Bo72]. However, they are a factor of two less than theoretical prediction and this 
discrepancy has not been clearly explained (see discussion in Ref. [Bo72]). Theoretical 
spectroscopic factors for the analogue states in 16N [Me96] are given in Table II for 
comparison. 

As can be seen in Table II, the widths of all four levels are close to the single particle 
shell model predictions with either of the two diffusion parameters. This successful single 
particle approach was then applied to the level shifts between the mirror nuclei. We 
wanted to calculate the shifts with two goals: (1) to understand how the general features 
of the potential affect the isotopic shift for the s-states in 16N and 16F, and (2) to obtain an 
additional estimate of the single particle spectroscopic factors for the s-states. The 
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isotopic shift of the levels depends primarily on the global radial distribution of the wave 
functions in the Coulomb field. It is well known [Th51, Eh51, No69] that the shift (to 
stronger binding) in the proton-rich nuclide is greatest for s-states due to the greater 
spacial extent of their wave functions.  

The calculations were made with two sets of potential parameters (Table III) for the 
Woods-Saxon distribution, which mainly differ by two parameters. The first, the 
conventional calculation, had the radius parameter r0 = 1.2 fm and the diffuseness 
parameter, a = 0.65 fm; the second, more diffuse potential had a smaller radius, which 
was compensated by a larger a = 0.75 fm. Then the well depths of the potentials were 
fixed by a fit to the excitation energies of the levels in 16N, and the same parameters were 
used to calculate the excitation energies of the levels in 16F. The only new factors in the 
calculations for 16F were a small change of the reduced mass and the Coulomb potential 
of the uniformly charged sphere with radius parameter, rC, of 1.2 fm. (The change of this 
parameter to 1.17 fm resulted in ~10 keV shift toward less binding) 

The “conventional” parameters in Table III result in a 16F ground state binding energy 
of -0.577 MeV, which is smaller than the experimental value of -0.535 MeV. We 
consider this disagreement as evidence of a need for a change of the parameters, which 
were fixed for stable nuclei [see also Go04]. Use of the diffuse potential provides 42 keV 
more binding than experiment for the 0- state and 58 keV more than for the 1- state (535 
keV + 193 keV). In this case we can consider the differences as an indication that the 
spectroscopic factors of these states are less than the single particle limit. To estimate the 
needed changes of the spectroscopic factors, we took the ratio of the differences between 
the calculated and experimental level positions to the average difference between the 
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excitation energies of the 2s1/2 states (0- and 1-) and the 1d5/2 states (2- and 3-) in 16N and 
16F. As a result, we obtained 0.91 for the spectroscopic factor of the 0- state, and 0.88 for 
the 1- state (see Table II).  

The absolute values of the spectroscopic factors are dependent upon the excitation 
energies of the 1d5/2 states in our approach. These excitation energies in their turn are 
dependent upon electromagnetic corrections and details of their nuclear structure (one 
can consider mixing with the nearest d3/2 states, for example). These corrections could be 
as large as 100 keV, which would result in 2% corrections to the absolute values of the 
spectroscopic factors. In addition, the differences in the values of the spectroscopic 
factors for the 0- and 1- states can have physical meaning. The smaller spectroscopic 
factor for the 1- state can be related to a possible admixture of the 1p1/2-1 1d3/2 

configuration (it is much more difficult to find a possible admixture for the Jπ = 0-). 

In conclusion, the experimental data on the widths and the excitation energies of the 
lowest states in 16F favor the more diffuse nuclear potential, as was observed earlier for 
the 15F case [Go04]. The four low-lying states of 16F manifest remarkably clear single 
particle structure. In this sense the population of these levels in different nuclear reactions 
can be used as a test of nuclear reaction theory as was proposed recently in [Mu05]. 
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Figure 6.1 An isobaric energy level diagram for the A=16, T=1 nuclear states [Ti93]. 
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Figure 6.2 The observed 15O beam profile at 0° in the laboratory without a Ni degrader 

and a target. A small tail consisting of 15N and other beam contaminants is observed. See 
text. 
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Figure 6.3 The experimental setup for the 15O+p resonance scattering reaction. See text. 
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Figure 6.4 A typical two-dimensional particle identification spectrum for ∆E-E1 
coincidences. Protons with energies below 2.7 MeV c.m. (around channel number 850 in 
E1) stopped in the ∆E-E1 detector telescope. Protons above this energy punched through 
the E1 detector and were also recorded in coincidence in the E2 detector. Consequently, 
the deposited energy in both the ∆E and the E1 detectors starts decreasing after this point, 
as is shown. See text. 
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Figure 6.5 The measured 15N+p excitation function at 180° c.m. without background 
subtraction used for the energy calibration. Experimental results from previous studies at 
different c.m. angles are also shown. 
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Figure 6.6 The measured 15O+p excitation function at 180° c.m. up to 6.5 MeV c.m. 
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Figure 6.7 The R-matrix fit for the low-lying states in 16F. The solid line represents the R-
matrix calculation added to the background; the background function is shown as a 
dashed line. See text for details. 
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Table 6.1 comparison of previous experimental studies with our results for the level widths. 

 

                  a This work. 
                  b The uncertainty primarily comes from the energy calibration ( ± 15 keV). 

 
 

Compilation [Ti93]  14N(3He,n)16F [Za65]  
14N(3He,n)16F(p)15O 

[Ot76]  
16O(3He,t)16F 
[St84]  p(15O,p) a 

Ex 
[MeV ± keV] 

Jπ Γp[keV]  Jπ Γp[keV]  Jπ Γp [keV]  Jπ Γp[keV]  
Ex b 

[MeV ± keV] 
Jπ Γp[keV] 

0 0- 40 ± 20  0- 50 ± 30  1- 39 ± 20  0- ≈  25  0 0- 23.1 ± 2.2 

0.193 ± 6 1- < 40  2- < 40  0- 96 ± 20  1- ≈  100  0.190 ± 20 1- 91.1 ± 9.9 

0.424 ± 5 2- 40 ± 30  1- 40 ± 30  ≥ 2 24 ± 20  2-   0.422 ± 19 2- 3.3 ± 0.6 

0.721 ± 4 3- < 15  3- < 15  ≥ 2 24 ± 20  3-   0.721 ± 17 3- 14.1 ± 1.7 
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Table  6.2 Comparison of 16F experimental results with the isobaric analog states in 16N and with theoretical calculations in the 
framework of the potential model. 

16N  16F  16F Theory 

Parameter set 
#1 (a=0.65 fm) 

Parameter set #2 (a=0.75 fm) 
Ex  
[MeV] 

Jπ SC 2  a  
Ex  

[MeV±keV] 
Jπ Γp[keV]b  

Γsp[keV] 
 

Γsp [keV] 
SC 2  

(Exp.) 

SC 2  

(Shift) 
 

0.120 0- 0.95  0 0- 23.1 ± 2.2  21.8  22 1.05 0.91 

0.397 1- 0.96  0.190 ± 20 1- 91.1 ± 9.9  89.5  96 0.95 0.88 

0 2- 0.93  0.422 ± 19 2- 3.3 ± 0.6  3.6  4.3 0.77  

0.296 3- 0.87  0.721 ± 17 3- 14.1 ± 1.7  12.7  15.0 0.94  

 

a OXBASH calculation reported in Ref. [Me96]. 
b This work. 
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Table 6.3 Woods-Saxon potential model parameters. 
 

Parameter set #1 Parameter set #2 

 0- 1- 0- 1- 

V -55.36 MeV -54.42 MeV -55.474 MeV -54.455 MeV 

ro 1.2 fm 1.2 fm 1.17 fm 1.17 fm 

a 0.65 fm 0.65 fm 0.75 fm 0.75 fm 

rc 1.2 fm 1.2 fm 1.2 fm 1.2 fm 

Vso 7.64 MeV 7.64 MeV 7.64 MeV 7.64 MeV 

aso 0.65 fm 0.65 fm 0.65 fm 0.65 fm 

ro so 1.17 fm 1.17 fm 1.17 fm 1.17 fm 
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CHAPTER  7 
Conclusion 
 

7.1  Summary and Conclusion 
Nuclear reaction studies with radioactive ion beams has become one of the most 

compelling research topics in modern nuclear physics. Many accelerator facilities around 
the world are developing new radioactive ion beams based on the ISOL or PF methods, 
and proposing advanced technologies to produce higher beam intensities or more exotic 
beams. The availability of new and improved radioactive ion beams will allow nuclear 
scientists to explore many unknown nuclei far from the stability, and to work toward a 
better understanding of the evolution of the universe. 

The BEARS facility at Lawrence Berkeley National Laboratory originally provided 
11C and 14O radioactive ion beams of high quality. Their beam intensities on target 

reached up to 2×108 pps for 11C and 3×104 pps for 14O, respectively. These proton-rich 

radioactive ion beams have been successfully used to explore new facets of proton-rich 
unstable nuclei such as 12N and 15F.  

In this work, the proton capture reaction on 11C was studied via the indirect 
d(11C,12N)n transfer reaction using the ANC method. A group at Beijing [Li03] reported 
the same experiment as we did, but their result was limited since their 11C beam intensity 
was orders of magnitude lower than was available in our experiment. Using BEARS, our 
experiment showed that the extracted ANC value is in excellent agreement with 
theoretical prediction and previous experimental studies. The total effective 12N→11C+p 
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ANC is found to be ( ) ( ) ( ) 1222
27.083.1

12

2/3

12

2/1

12
−±=+= fmCCC N

p
N

p
N

eff . This study confirmed 

that the 11C(p,γ) reaction is a key reaction producing CNO nuclei in supermassive low-
metallicity stars, bypassing the slow triple alpha process.  

Recently, an 15O radioactive ion beam (with an intensity of a few times 104 pps on 
target) was successfully developed at BEARS [Po05], and utilized to study the level 
widths of 16F. Among the nuclei in the A=16, T=1 isobaric triad, many states in 16N and 
16O have been well established, but less has been reported on 16F. Four states of 16F below 
1 MeV have been identified experimentally: 0-, 1-, 2-, and 3- (Ex = 0.0, 0.19, 0.42, and 
0.72 MeV, respectively). However, their level widths have remained uncertain for over a 
decade. Our study found that the 0- state has a level width of 23.1 ± 2.2 keV, and that the 
broader 1- state has a width of 91.1 ± 9.9 keV. The level width of the 2- state is found to 
be 3.3 ± 0.6 keV which is much narrower than the compiled value of 40 ± 30 keV, while 
14.1 ± 1.7 keV for the 3- state is in good agreement with < 15 keV in Ref. [Ti93]. When 
compared to shell model theory, all four level widths are seen to be close to the single-
particle limit, making them excellent candidates for tests of nuclear reaction theory 
[Mu05]. 

 

7.2  Research Opportunities with BEARS 
As mentioned in Chapter 3, CeNpCpBpBe 12121187 )(),(),(),( νγαγ +  is one of several 

possible hot pp-chains, producing CNO seed nuclei in supermassive stars. The 
astrophysical S-factor and the stellar reaction rate of 11C(p,γ) have been experimentally 
studied with the help of 11C radioactive ion beams at several radioactive ion beam 
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facilities, including BEARS. However, only a few experimental studies of the 8B(α,p)11C 
reaction have been reported so far [Re04]. A study of the time-reversed reaction, 
11C(p,α)8B, will not only verify the importance of this reaction in stellar processes, but 
provides very useful nuclear reaction data for unstable proton-rich nuclei. 

In addition to classical hydrogen burning processes, there are a number of extremely 
hot, dense astrophysical environments where hydrogen is expected to burn explosively. 
These include supermassive stars, x-ray bursters, novae, and supernovae. The hot-CNO 

cycle 12C(p,γ)13N(p,γ)14O(e+νe) 14N(p,γ)15O(e+νe)15N(p,α)12C is one reaction chain, 

replacing the classic CNO cycle as is shown in Chapter 3 (see Section 3.4). When the 
stellar temperatures are high enough (T9 ≥ 0.3), the β-decay of 14O can be bypassed by the 
14O(α,p)17F reaction, and the reaction sequence 14O(α,p)17F(p,γ)18Ne(e+νe)18F(p,α)15O can 

increase the energy generation rate and alter the abundances of the CNO nuclides [Ba97]. 
Hence, a higher intensity 14O radioactive ion beam at BEARS will be a very useful tool to 
study the 14O(α,p)17F reaction. 

Furthermore, the reaction sequence 14O(α,p)17F(p,γ)18Ne(e+νe)18F(p,γ)19Ne(p,γ)20Na 

can provide a path from the hot-CNO cycle into the rapid proton capture process (rp-
process) where the energy generation rate is increased by orders of magnitude. In 
addition to the 18F(p,γ)19Ne reaction, the other important breakout reactions into the rp-
process are identified to be the 18Ne(α,p)21Na reaction, and especially, the 15O(α,γ)19Ne 
reaction [Wa81]. These breakouts from the hot-CNO cycle into the rp-process can 
explain how nova explosions can produce the abundances of heavier elements, e.g., Ne, 
Na, and Al which are seen in nova remnants. Therefore, the newly developed 15O 
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radioactive ion beam at BEARS also provides a good opportunity to study the 
15O(α,γ)19Ne reaction. 
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